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Valuing an insurance balance sheet is a complex exercise which 

requires the use of stochastic economic scenarios. Various tests  

should be performed to ensure such valuation is produced in a 

reasonable manner, including the martingale tests on the economic 

scenarios and the leakage test on the insurance asset-liability 

management (ALM) model, i.e., initial market value of asset is equal to 

the sum of the best estimate of liabilities (BEL) and the present value of 

future profits (PVFP).  

In practice, given the run time constraints of typical ALM models, the number of economic scenarios to be 

considered is limited. Hence, there is a need to develop techniques to ensure that the stochastic valuation of BEL 

and PVFP converges towards their true values and therefore that the leakage is reasonable and stable between 

different valuation dates. One potential solution is to enhance the Random Number Generator (RNG) used to 

generate the stochastic economic scenarios. In this paper, we present a new RNG and demonstrate its efficiency 

over existing RNGs for the valuation of stochastic BEL. We also discuss the need for universal and interpretable 

validation strategies for martingale tests for such types of RNGs. 

The use of RNGs and their requirements 
The increasing use of stochastic economic scenarios for the valuation of insurance liabilities—e.g., Solvency II, 

International Financial Reporting Standard (IFRS) 17, Long-Duration Targeted Improvements (LDTI), 

International Capital Standard, Risk-Based Capital regimes in Asia—is putting more pressure on the operational 

processes of insurance companies, with a particular focus on the ALM model run time when, for example, 1,000 

or more stochastic economic scenarios are used for BEL and PVFP valuation. Besides, there is an increasing 

need to produce reliable and stable valuation estimates over time and for different economic conditions. As one 

of the key inputs of the Economic Scenario Generator (ESG), the RNG plays a critical role in the quality of the 

economic scenarios generated and subsequently on the quality of the assessment of the interactions between 

the assets and liabilities of the insurer, and ultimately on the convergence of the stochastic BEL and PVFP.  

At first, any Economic Scenario Generator (ESG)—hence the underlying RNG—shall satisfy the three 

following conditions: 

 Simulations consistently distributed according to the mathematical specification of the model 

 Properly correlated risk drivers  

 Independent scenarios 
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However, those conditions are typically not sufficient to guarantee reasonable validation tests performed on the 

economic scenarios (e.g., martingale tests, repricing tests and correlation tests) if the number of simulations is 

limited, which is the case in practice. In the worst-case scenario, validation tests may fail even though an 

appropriate economic scenario generation process is in place. As a consequence, this could lead to a significant 

leakage as well as issues with Monte Carlo repricing mis-estimation. To this extent, insurance and reinsurance 

undertakings are required to demonstrate the quality of the RNG they are using. This requirement is clearly 

mentioned under Solvency II by the following guideline regarding the valuation of the technical provisions: 

“Insurance and reinsurance undertakings should ensure that (pseudo) random number generators 

used in an ESG are properly tested.”1 

Besides, it is also an area of interest for regulators. In particular, in the second half of 2020, the French Prudential 

Supervision and Resolution Authority (ACPR) carried out a review of the Economic Scenario Generators (ESGs) 

used by a sample of 15 French insurance companies. This review was based on a series of on-site checks and 

the key conclusions were set out in a paper2 summarising the diversity of practices observed and providing 

insights on some of the best practices, with a particular focus on the assessment and validation of the uncertainty 

around the stochastic valuation.  

The following paragraphs discuss some of the more general market practices mentioned by the ACPR for making 

and validating stochastic assessments. It is also worth noticing that such practices are also commonly used in 

other insurance markets across the world. 

Practitioners have typically observed discrepancies between the ”Monte Carlo” valuation estimate of the BEL and 

PVFP and their true expected values, with the exact gap changing from time to time depending on economic 

conditions and/or stress tests performed. This discrepancy is referred to as ”leakage.” Setting aside the ALM 

model error as potential source of leakage, this gap is generally due to the convergence error, given that a limited 

number of risk-neutral economic scenarios is produced in practice, typically between 1,000 and 5,000. To try to 

make this gap lower and/or more stable, some companies have investigated a few more pragmatic methods, 

such as: 

 Seed optimisation approach. Because most of the RNGs depend on a core parameter called a ”seed,” it is 

tempting to select the seed such that an overall threshold on leakage is met. However, in practice the seed 

selection process remains exploratory and even complex when a large number of risk drivers is considered 

(e.g., interest rate, equity, credit, multiple currencies etc.), and the optimised seed may not always be 

stable—for example, the leakage may increase under a different set of economic conditions based on the 

“optimised” seed as some ESG validation tests may improve while some others may deteriorate. 

 Moment matching adjustment. This refers to adjusting the Monte Carlo estimates of moments (of order 1 

or higher) to match their true expected values. Examples include adjusting the Monte Carlo average when 

assessing the martingale test to its true value (moment matching at order 1), or scaling the variance with an 

objective to match some volatility targets (moment matching at order 2) or any other distributional 

characteristics of higher orders (e.g., skewness, kurtosis). As such, this approach modifies the distribution of 

the outcomes (in particular, scenarios are not independent anymore), with possible adverse impact on 

repricing tests.  

  

 
1 EIOPA. Guideline 59 on the valuation of technical provisions – random and pseudo random number generators. 

2 ACPR (7 December 2020). Economic Scenario Generators: Points of attention and good practices. Retrieved 1 December 2022 from 

https://acpr.banque-france.fr/generateurs-de-scenarios-economiques-points-dattention-et-bonnes-pratiques. 

https://acpr.banque-france.fr/generateurs-de-scenarios-economiques-points-dattention-et-bonnes-pratiques
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Additional techniques have also been used by insurance companies in practice and typically produce more 

stable outcomes or are less subject to expert judgement. One of them relies on variance reduction 

techniques. In particular:  

 Antithetic variables: The basic principle of antithetic variables is to generate and use stochastic scenarios 

by pairs (𝑋1, 𝑋2) that are negatively correlated such that estimates based on 
𝑋1+𝑋2

2
 have lower variance than 

those based on independent values of (𝑋1, 𝑋2). In practice, such approach is relatively straightforward to 

implement. However, the convergence rate improvement remains rather limited.3  

 Control variates: The underlying idea is to find a variable 𝐿∗ that is correlated to the liability valuation of 

interest 𝐿 and for which the true expected value is known; this can be, for example, economic variables, the 

asset portfolio or any replicating portfolio.4 In the end, the expected value of the liabilities is calculated as: 

𝜇𝐿∗ + 𝔼̂[𝐿 − 𝐿∗], 

i.e., by adding the true value of the control variate expectation to the Monte Carlo estimate of the difference 

between the liabilities and its control variate, the latter having better convergence properties given the lower 

variance of the estimate at stake due to positive correlation between both. 

Note that when antithetic variables are used, scenarios are not independent anymore, so that any estimation 

error assessment based on the scenarios shall take into account their dependence, especially regarding the 

underlying variance estimate, as mentioned by the ACPR:  

“When variance reduction methods are used (antithetic variables for example), the confidence 

intervals or the p-values  of the statistical tests must be calculated taking into account the lack of 

independence between the scenarios.”2 

Another technique is based on quasi-Monte Carlo RNG. This is covered more specifically in the rest of this paper. 

Finally, other techniques such as reweighting5 can help achieving higher convergence by weighting the scenarios 

distribution in view of better matching of martingale properties and the replication of market prices. 

Existing RNGs and their limitations 
PSEUDO RANDOM NUMBER GENERATORS 

The classic Monte Carlo method usually refers to the simulation of uniformly distributed random numbers on 

[0,1], called pseudo random numbers, which aims at reproducing random trials, as illustrated in Figure 1. By 

the central limit theorem, the convergence rate of a standard Monte Carlo method is 
1

√𝑁
, where 𝑁 is the 

number of simulations.  

One of the simplest methods to generate pseudo random numbers is to use a linear congruential generator. 

Given four integers (𝑎, 𝑏, 𝑚, 𝑢0), a pseudo random sequence (𝑥𝑛)𝑛∈ℕ can be constructed as: 

𝑥𝑛 =
𝑢𝑛

𝑚
 

with:  

𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏  mod 𝑚. 

The integer 𝑢0 is called the seed and should be provided by the user (if not, it is generally chosen using the 

computer clock), whereas the integers 𝑎, 𝑏, 𝑚 are determined at initial stage so as to ensure good statistical 

properties of the generated sequences. An example of a generator based on linear congruential operations is 

Witchmann-Hill, which has been used in practice by a number of companies for insurance balance sheet valuation.  

 
3 Paskov, S. H. & Traub, J. F. (1995). Faster valuation of financial derivatives. Journal of Portfolio Management 22(1), 113–123. 

4 Hull, J., & White, A. (1988). The use of the control variate technique in option pricing. Journal of Financial and Quantitative analysis, 23(3), 237-251. 

5 Howell, C., Leitschkis, M., & Ward, R. (July 2019). ESG Rebase. Milliman White Paper. Retrieved 2 December 2022 from 

https://fr.milliman.com/fr-fr/insight/esg-rebase. 

https://fr.milliman.com/fr-fr/insight/esg-rebase
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A more sophisticated version of a pseudo random generator is Mersenne Twister,6 which is widely used by  

ESG practitioners. 

FIGURE 1: REPRESENTATION OF THE 1ST (X-AXIS) AND 2ND (Y-AXIS) COORDINATES OF THE FIRST 1,000 PSEUDO RANDOM 

NUMBERS GENERATED WITH THE MERSENNE TWISTER ALGORITHM 

 

QUASI RANDOM NUMBER GENERATORS 

The idea of constructing quasi-random numbers follows the desire to achieve faster convergence than the Monte 

Carlo rate of 
1

√𝑁
. More specifically, consider the problem of approximating the integral: 

𝐼(𝑓) = ∫ 𝑓(𝑥)𝑑𝑥
[0,1]𝑑

. 

This integral can represent the price of liabilities, of derivatives (option, swaption etc.), a martingale test or the 

liability value. Quasi-random points 𝑥1, … , 𝑥𝑛 in [0,1]𝑑 allow us to approximate this integral as: 

𝐼(𝑓) ≈
1

𝑁
∑ 𝑓(𝑥𝑛)

𝑁

𝑛=1

 

The so-called discrepancy of the sequence (𝑥𝑛), denoted by 𝐷(𝑥1, … , 𝑥𝑁), measures how close is the sequence 

to a uniform distribution. The discrepancy can be used to control the estimation error as follows: 

|𝐼(𝑓) −
1

𝑁
∑ 𝑓(𝑥𝑛)

𝑁

𝑛=1

| ≤ 𝐶(𝑓)𝐷(𝑥1, … , 𝑥𝑁) 

where 𝐶(𝑓) is a constant, called the Hardy-Krause variation, that depends on the regularity of the payoff function 𝑓.  

It is now acknowledged that sequences having a discrepancy of 

(log 𝑁)𝑑

𝑁
, 

where 𝑑 is the dimension at stake are so-called low-discrepancy sequences.7  

 
6 Matsumoto, M., & Nishimura, T. (1998). Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number 

generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1), 3-30. 

7 Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods. Society for Industrial and Applied Mathematics. 
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Such sequence does show a specific deterministic pattern allowing us to achieve a very low estimation error, as 

illustrated in Figure 2. One of the most famous low-discrepancy sequences is that of Sobol,8 who provided a 

theorem that ensures a lower estimation error by using quasi-random number generation with the Sobol 

sequence rather than using a pseudo random method with a uniform distribution.  

It appears that, in many financial applications with reasonable dimensions, quasi-Monte Carlo outperforms 

ordinary Monte Carlo.3 However, practitioners are struggling to achieve good convergence properties for higher 

dimensional problems. As such, a typical example of economic scenarios, as shown in the case study section of 

this paper below, with 16 risk factors, simulated on a monthly time step and over 60 years of projection, leads to 

a dimension 𝑑 = 60 × 12 × 16 = 11,520. With such a high dimension, the convergence rate of the low-

discrepancy sequence is relatively low and does not efficiently compete with pseudo random numbers (even with 

possible additional variance reduction techniques as outlined above). 

FIGURE 2: REPRESENTATION OF THE 1ST (X-AXIS) AND 2ND (Y-AXIS) COORDINATES OF THE FIRST 1,000 QUASI-RANDOM 

NUMBERS GENERATED WITH SOBOL SEQUENCES 

 

To summarise, pseudo RNGs are relatively flexible and universal, in the sense that they can be used when 

dealing with a high number of dimensions (driven by the number of currencies, risk factors, time steps) because 

they achieve a similar convergence rate, although this convergence rate is far from optimal. On the other hand, 

quasi-random numbers have appealing convergence properties, but the convergence rate deteriorates as the 

dimension increases.  

As such, the objective of the next section is to set out the key steps for the construction of a hybrid RNG that 

takes advantage of key features of both the pseudo RNGs and the quasi-RNGs. 

  

 
8 Sobol, I. Y. M. (1967). On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel'noi Matematiki i 

Matematicheskoi Fiziki, 7(4), 784-802. 
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A hybrid RNG with improved characteristics 
THE SO-CALLED HYBRID RNG RELIES ON THREE CORE FEATURES: 

1. Using a quasi-RNG as a basis in a dimension that is reasonable in order to preserve an efficient 

convergence rate; in the present case, this is achieved by using the quasi-random numbers for the time 

steps at a lower frequency (e.g., annual) than the final simulated scenarios (e.g., monthly). The core 

sequence will be selected among a collection of existing sequences (e.g., Sobol, Faure, Torus) based 

on the quality of outcomes from the ESG, including martingale and repricing tests.  

2. Relying on a Brownian bridge technique to recompose paths of Brownian motions at the refined 

timestep (e.g., monthly) to support the approach mentioned in the first point above. The Brownian bridge 

will rely on pseudo random numbers in order to preserve the low dimensionality of the use of the quasi-

random numbers that will be restricted to a less granular projection time step (e.g., annual). 

3. A so-called randomisation approach is considered. It consists in perturbing the (deterministic) quasi-

Monte Carlo sequence by a random transformation (such as a shift), in order to derive better 

convergence properties. 

The three core ingredients are further detailed in the following.  

LOW-DISCREPANCY SEQUENCE 

The so-called Van der Corput sequence is a low-discrepancy sequence in dimension 1, which is therefore not of 

practical use, but is the building block of many other low-discrepancy sequences. Indeed, a sophisticated 

generalisation of the Van der Corput sequence in dimension 𝑑 is the Faure sequence, which will be a first RNG of 

interest in this paper. The Faure sequence is theoretically well adapted to high-dimension problems. Indeed, its 

discrepancy satisfies: 

𝐷(𝑥1, … , 𝑥𝑁) ∼ 𝐹𝑑

(log 𝑁)𝑑

𝑁
. 

where 𝐹𝑑 converges to 0 as 𝑑 converges to infinity  

Like the Faure sequence, the well-known Sobol sequence results from transformations of the Van der Corput 

sequence. Differences between the Sobol and the Faure sequences include that the calculations underlying the 

Sobol numbers generation are more computationally efficient, and that there are structural limitations about the 

current availability of Sobol sequences in terms of dimension within existing packages. The discrepancy of the 

Sobol sequence in dimension 𝑑 satisfies: 

𝐷(𝑥1, … , 𝑥𝑁) ∼
2𝐻(𝑑)(log 𝑁)𝑑

𝑁
 , 

where 𝐻(𝑑) is a function of 𝑑 growing faster than 𝑑 but slower than 𝑑 log 𝑑  

Although this theoretical bound is definitely worse than for the Faure sequence in high-dimension problems, the 

Sobol sequence seems to be the most competitive low-discrepancy sequence when using practical dimensions, 

as shown in the literature and as will also be the case in this paper. 

Unlike the previous sequences, the Torus sequence, which will be the third approach of interest, is not built from 

the Van der Corput sequence and is derived by a dedicated method based on predefined prime numbers. 

An illustration of the three quasi-Monte Carlo sequences is provided in Figure 3.  
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FIGURE 3: REPRESENTATION OF THE 9,999TH (X-AXIS) AND 10,000TH (Y-AXIS) COORDINATES OF THE FIRST 1,000 POINTS OF THE 

FAURE (LEFT), SOBOL (MIDDLE) AND TORUS (RIGHT) SEQUENCES IN DIMENSION 10,000 

 

BROWNIAN BRIDGE 

The Brownian bridge is a well-known approach to simulate paths of a Brownian motion. Instead of simulating 

paths in a forward manner, as in the Euler scheme for example, the Brownian bridge allows us to simulate a path 

conditionally on past and future outcomes being given. It relies on the following result, which states that, given 

outcomes 𝑊𝑠1
, … , 𝑊𝑠𝑚

 at some less granular time steps 𝑠1, … , 𝑠𝑚, the distribution of 𝑊 at some point 𝑠 within an 

interval [𝑠𝑖 , 𝑠𝑖+1] is:  

𝑊𝑠 =
(𝑠𝑖+1 − 𝑠)𝑥𝑖 + (𝑠 − 𝑠𝑖)𝑥𝑖+1

𝑠𝑖+1 − 𝑠𝑖

+ √
(𝑠𝑖+1 − 𝑠)(𝑠 − 𝑠𝑖)

𝑠𝑖+1 − 𝑠𝑖

𝐺,  

where 𝐺~𝒩(0,1) is independent from 𝑊𝑠1
, … , 𝑊𝑠𝑚

  

Such a formula can then be applied recursively to build the Brownian path within an overall interval, as illustrated 

in three main steps in Figure 4. 

FIGURE 4: BROWNIAN BRIDGE 

 

Thus, when a Brownian motion trajectory is simulated using the Brownian bridge, the overall shape of the 

trajectory is determined by the first standard normal variables that have been used in the first step. This property 

is particularly relevant in the context of low-discrepancy sequences in high dimension. Indeed, some coordinates 

of a low-discrepancy sequence may exhibit better uniformity properties than others; for instance, Figure 3 

illustrates a deterioration of uniformity with high dimensions. The Brownian bridge allows us to leverage the 

uniformity property by using the first coordinates to generate the coarse structure of the Brownian paths. Hence, 

this approach is particularly useful for low-discrepancy sequences that can’t be generated beyond a certain 

dimension (such as the Sobol sequence) or whose high-dimensional behaviour deteriorates.  
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RANDOMISATION 

In the context of quasi-Monte Carlo generators, randomisation consists in randomising low-discrepancy 

sequences using pseudo random numbers. Starting from a point set 𝑃𝑛 = {𝑥1, … , 𝑥𝑛} consisting of 𝑛 terms of a 

low-discrepancy sequence, randomisation produces a point set 𝑃̃𝑛 = {𝑥̃1, … , 𝑥̃𝑛} satisfying: 

 Each point 𝑥̃𝑖 is uniformly distributed over [0,1]𝑑 

 The set 𝑃̃𝑛 still has the low-discrepancy property 

It can be shown that, in some settings, randomisation improves the accuracy of the quasi-Monte Carlo 

approximation. As an example, one result9 states that the approximation error using some specific randomisation 

is 𝑂(1/𝑛1.5−𝜖) while the approximation error is 𝑂(1/𝑛1−𝜖) without randomisation. This result has only been proven 

for smooth integrands, but nevertheless it indicates that randomisation can be a solution to reduce the 

approximation error.  

Several randomisation techniques exist but they can’t be applied to all kinds of low-discrepancy sequences. 

The case study presented in the next section introduces a randomisation, which consists in distorting quasi-

random points based on additional pseudo random perturbation. This randomisation works for the Faure and 

Sobol sequences. 

ESG case study 
SETTING 

The proposed case study relies on economic scenarios generated for three currencies and a number of asset 

classes as detailed in the table in Figure 5; for each model, the number of risk factors is also presented in order 

to better appreciate the high number of dimensions. 

FIGURE 5: CURRENCY, ASSET CLASS, AND RISK FACTORS 

CURRENCY ASSET CLASS 

NUMBER OF 

RISK FACTORS 

EUR Nominal interest rate 2 

Real interest rate 2 

Equity 1 

Real estate  1 

USD Nominal interest rate 2 

Real interest rate 2 

FX rate 1 

GBP Nominal interest rate 2 

Real interest rate 2 

FX rate 1 

Under this setting, 1,000 stochastic risk-neutral scenarios are simulated over a projection horizon of 60 years 

using a monthly time step.  

We consider the following methods in this numerical experiment: 

 One ordinary Monte Carlo method relying on the Mersenne Twister RNG and making use of antithetic 

variables. This method is referred to as “MT-AV.” 

 Three hybrid methods as specified in the table in Figure 6. 

  

 
9 Owen, A. B. (1997). Scrambled net variance for integrals of smooth functions. Annals of statistics, 25(4), 1541-1562. 
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FIGURE 6: HYBRID METHODS 

METHOD 

LOW-DISCREPANCY 

SEQUENCE RANDOMISATION 

FaureG-DS-hybrid60 Faure Generalised Digital shift 

Sobol-DS-hybrid60 Sobol Digital shift 

Torus-hybrid60 Torus No randomisation 

 

RESULTS ON THE ECONOMIC SCENARIOS 

The comparison between the various methods is produced using the root mean squared relative error (RMSRE), 

which is computed for all martingale and repricing tests for all asset classes. This RMSRE is defined as follows: 

𝑅𝑀𝑆𝑅𝐸 =  √
1

|𝒯|
∑ (

𝐸̂𝑖 − 𝐸𝑖

𝐸𝑖
)

2

𝑖∈𝒯

, 

where 𝒯 is the set of all martingale and repricing tests, 𝐸̂𝑖 is the estimated value over the simulations for test 

indexed by 𝑖 and 𝐸𝑖 is the corresponding true value  

For example, if 𝑖 is the index of a martingale test of the discount factor of maturity 𝑇, then 𝐸𝑖 is given by the zero-

coupon bond price 𝑃(0, 𝑇) at time 0 and maturity 𝑇 and 𝐸̂𝑖 is given by the empirical mean 
1

𝑁
∑ 𝐷(𝑗)(0, 𝑇)𝑁

𝑗=1 , where 

𝐷(𝑗)(0, 𝑇) is the discount factor value of maturity 𝑇 in the 𝑗-th simulation. Overall, the lower the RMSRE, the better 

the method.10 

Each method is illustrated for 30 different seeds, resulting in 30 values of the RMSRE for each. Note that pure 

quasi-Monte Carlo methods do not depend on a seed but here we consider quasi-Monte Carlo methods in 

combination with hybrid Brownian bridge and digital shift, which involve pseudo random numbers that do depend 

on a seed. The results are presented in Figure 7. 

FIGURE 7: RMSRE FOR THE DIFFERENT RNG METHODS 

 

  

 
10 The metric used here is for illustration purposes. In practice, this could be adjusted to each company’s risk profile, by considering weights in line 

with the asset and liability sensibility, in order to give more or less importance to the martingale and/or repricing deviations, depending on their 

impact on the liabilities. It is also worth mentioning that correlation tests could be included in the metrics. 
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We observe that the three hybrid methods outperform the Monte Carlo method (MT-AV) and that the Sobol-DS-

hybrid60 is the best among the three tested. In particular, we see some differences due to the selection of hybrid 

seeds. This is however compensated by the fact that the worse seeds for the hybrid Sobol RNG provide RMSRE 

results close to most seeds for the pseudo RNG with antithetic variables. It is also worth highlighting that the 

hybrid Torus RNG is not randomised, hence showing lower variance in RMSRE but with higher variance in 

average compared to Faure and Sobol. 

In order to illustrate the average improvements of quasi-Monte Carlo over ordinary Monte Carlo in terms of 

martingale and repricing tests, we plot some of them for both approaches and for an “average seed,” i.e., for a 

seed yielding a RMSRE close to the average in the previous box plots. In Figure 8, the discount factor martingale 

tests for the GBP currency are shown, while in Figure 9 the martingale test for the foreign exchange (FX) rate 

from USD to EUR is presented. As it is shown, the use of an “average seed” leads to martingale tests that are 

closer to their true expected values when using the hybrid RNG as opposed to the pseudo RNG with antithetic 

variables. It is also worth noting that the estimate of the empirical variance is also more precise when using the 

low-discrepancy RNG, leading to more robust confidence interval estimates.  

FIGURE 8: DISCOUNT FACTOR MARTINGALE TESTS FOR MT-AV (LEFT) AND SOBOL-DS-HYBRID60 (RIGHT) 

 

FIGURE 9: FX MARTINGALE TESTS FOR MT-AV (LEFT) AND SOBOL-DS-HYBRID60 (RIGHT) 

 

We also show in Figure 10 the difference between Monte Carlo swaption volatilities (at-the-money, for USD 

currency as an illustration) and the volatilities repriced by the model (through approximate formulas, as used in 

the calibration process). We can see in particular that the discrepancies between Monte Carlo and model 

swaption volatilities are lower with the hybrid RNG compared to the pseudo RNG with antithetic variables. Note 

that it is not expected to get an error of zero as the model prices are derived by approximations (including the so-

called freezing) in order to recover tractable numerical methods for pricing. Nevertheless, this tends to show that 

the improved RNG not only materialises with better martingale tests, but also better repricing tests in the sense 
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that the Monte Carlo prices are closer to their true value, so that additional sampling noise around Monte Carlo 

repricing is further reduced. As such, this provides a tool to better assess pure approximations in pricing 

formulas, and then better governance around validation of repricing tests. 

FIGURE 10: USD SWAPTION REPRICING TESTS FOR MT-AV (LEFT) AND SOBOL-DS-HYBRID60 (RIGHT) 

 

Note that Figure 10 represents the discrepancies between the Monte Carlo swaption volatilities (calculated on the 

sample of risk-neutral simulations for interest rates) and the model volatilities (computed through the closed-form 

approximations, as used in the calibration process). The discrepancies are represented in the scale in terms of 

basis points (bps), over two axes, namely maturities and tenors of the swaptions. 

Impact study on a cash flow model 

To support the above analysis, we have developed a case study assessing the impact of the RNG on the key 

quantitative metrics of an insurance company. To this extent we simulate 3,000 stochastic paths of the 

financial risk factors at 31 December 2021 with the Milliman ESG, the Cloud Hosted Economic Scenario 

Simulator (Milliman CHESS™),11 using both the Mersenne Twister with antithetic variables (MT-AV) RNG and 

the Sobol-DS-hybrid60 RNG introduced in this case study. These scenarios are then read as input of a cash 

flow model of a typical representative French life insurance company. In the following, we compare three key 

indicators, namely: 

 The best estimate of liabilities (BEL). The BEL values presented in this section have been normalised by the 

total asset market value.  

 The value of in-force (VIF), which represents the present value of future profits of the insurance company. As 

for the BEL, the VIF has been normalised by the total asset market value.  

 The ALM leakage defined as the initial market value minus the sum of the BEL and the VIF (before 

reallocation of the model leakage). In the following the model leakage is given as a percentage of the total 

market value of assets. 

COMPARISON OF THE RNGS FOR SEVERAL SEEDS 

Firstly, we compare the key indicators obtained with the MT-AV and the Sobol-DS-hybrid60 RNGs. Because the 

methods rely on a limited number of scenarios (here 3,000), the value of the key indicators can depend on the 

seed that has been used to initialise the RNG. In order to measure the sensitivity of the key indicators to the 

seed, the results are produced using 12 different seeds. As mentioned earlier, although the Sobol-DS-hybrid60 

method uses quasi-random numbers, the seed has an influence because this hybrid RNG encompasses for 

Brownian bridging and randomisation features, which both rely on pseudo random numbers. For reference, the 

graphs in Figures 11 to 13 also provide the average BEL, VIF and leakage computed over the two RNGs and all 

the 12 seeds. 

 
11 See https://www.milliman.com/en/products/milliman-chess. 

https://www.milliman.com/en/products/milliman-chess
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FIGURE 11: COMPARISON OF THE BEL OBTAINED WITH THE MT-AV AND THE SOBOL-DS-HYBRID60 RNG (EACH POINT 

REPRESENTS A SEED) 

 

FIGURE 12: COMPARISON OF THE VIF OBTAINED WITH THE MT-AV AND THE SOBOL-DS-HYBRID60 RNG 

 

FIGURE 13: COMPARISON OF THE LEAKAGE OBTAINED WITH THE MT-AV AND THE SOBOL-DS-HYBRID60 RNG 
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We observe that the hybrid Sobol RNG is more stable when assessing the key indicators; in particular this 

method induces BEL and VIF values nearer to the overall average as well as a model leakage closer to the target 

value of 0. The overall average leakage value can be interpreted as the limit when increasing the number of 

simulations; it is very close to 0, as expected.  

We set out in the table in Figure 14 a few additional descriptive statistics on the VIF. Note that similar findings 

can be drawn from the analysis of the BEL. The minimum (or maximum) variation is computed as the minimum 

(or maximum) observed VIF divided by the average VIF computed over the 12 seeds. 

FIGURE 14: VIF STATISTICS 

 
MEAN 

STANDARD  

ERROR 

MIN. VARIATION 

COMPARED TO MEAN 

MAX. VARIATION 

COMPARED TO MEAN 

MT-AV 0.02083 0.056% -5.7% 3.9% 

SOBOL-DS-HYBRID60 0.02109 0.012% -0.9% 1.0% 

These results confirm that the MT-AV RNG has the highest variability, with a range of uncertainty reaching up to 

9.5% of the total VIF. In comparison, the Sobol-DS-hybrid is significantly more stable, as the maximal variation of 

the VIF is about four to five times smaller.  

IMPACT OF THE SOBOL SEQUENCE STARTING POINT 

Sobol sequences attribute a polynomial function to each dimension of the problem to be sampled. Each 

simulation 𝑘 is then given an integer 𝑖𝑘 that is passed to the polynomial functions, outputting a “random number” 

for each dimension. Generally, this integer is determined as the simulation index, formally 𝑖1 = 1, … , 𝑖𝑛 = 𝑛 (with 𝑛 

the number of paths to be generated). The results previously discussed for the Sobol-DS-hybrid60 RNG rely on 

this choice. Nevertheless, one could skip the first Sobol numbers to address the impact of the Sobol sequence 

starting point, e.g., taking 𝑖1 = 𝑛, … , 𝑖𝑛 = 2𝑛. The graph in Figure 15 additionally plots the VIF computed by 

skipping the first 𝑛 points over the 12 seeds; this approach is labelled the Sobol-DS-hybrid60-skip. 

FIGURE 15: IMPACT OF THE SOBOL SEQUENCE STARTING POINT ON THE VIF 
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The table in Figure 16 shows a few additional descriptive statistics on the VIF. 

FIGURE 16: VIF STATISTICS 

 
MEAN 

STANDARD  

ERROR 

MIN. VARIATION 

COMPARED TO MEAN 

MAX. VARIATION 

COMPARED TO MEAN 

MT-AV 0.02083 0.056% -5.7% 3.9% 

SOBOL-DS-HYBRID60 0.02109 0.012% -0.9% 1.0% 

SOBOL-DS-HYBRID60-SKIP 0.02111 0.014% -0.8% 1.0% 

This analysis shows that modifying the starting point of the Sobol sequence has no significant impact on the 

Sobol-DS-hybrid60 results, because the variability remains limited, and the average value of the VIF is not 

materially different (about 0.1% variation). These observations are also valid for the BEL and the leakage. There 

are several discussions in the scientific literature about dropping the initial Sobol points. However, there is no 

theoretical evidence regarding the benefits of such an approach. On this topic, a recent paper12 even 

demonstrates that skipping the first point can have drawbacks for some applications. 

Validation of RNG outcomes in the ESG process 
As presented in this paper, hybrid RNGs can be designed as a core quasi-Monte Carlo method, augmented by 

Brownian bridging techniques (to control the dimension) as well as randomisation (to improve convergence 

properties). As such, they offer competitive RNGs to improve the quality of liability valuation estimates when the 

number of scenarios is fixed and limited, and to this extent outperform pseudo RNGs with antithetic variables in 

particular, even after—in some cases—using posteriori adjustments as moment matching. This type of new RNG 

for insurance applications is expected to lead the way towards an improved market practice regarding the choice 

of RNG, along with a better stability of the leakage over different economic conditions and stresses. 

As different and even new techniques for generating random numbers become available within ESGs, a 

heterogeneity of practices to validate economic scenarios is observed, especially regarding martingale tests. This 

results in overall accuracy being different from one application to another, hence leading to a natural question about 

the way the leakage can be assessed at economic scenario levels in a consistent and interpretable manner. 

CONFIDENCE INTERVAL VS. ESTIMATION ERROR 

We can distinguish two specific concepts: 

 Model-based confidence interval is the confidence range provided by the model governed by random 

sources (Brownian motions in general). By nature, the model-based confidence interval does not depend on 

the random number generation. The aim of the confidence interval is to validate the statistical 

reasonableness of the empirical mean deviations in the light of the original model. Moreover, as it relies on a 

closed-form confidence interval (where the variance can be estimated on the original sample), there is no 

computational burden related to the calculation of model-based confidence intervals. 

 Estimation error is the uncertainty on the estimator of the empirical mean (martingale tests, repricing tests, 

correlation tests). Hence, estimation error typically depends on the RNG. For low-discrepancy sequences, 

estimation error is significantly reduced, leading to improved leakage, or to a better convergence of Monte 

Carlo repricing and correlation estimates. Measuring estimation error is often tackled via bootstrap 

techniques, which are computationally intensive. As an example, for a reasonable 95% estimation error 

estimate with 10,000 bootstrap simulations, and in the context where 5,000 risk-neutral paths are used for 

valuation, the computational cost corresponds to 5 × 107, which is equivalent to a nested stochastics 

application such as within economic capital models.  

  

 
12 Owen, A. B. (2022). On dropping the first Sobol point. In International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific 

Computing (pp. 71-86). Springer, Cham. 
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VALIDATION STRATEGY 

Improvement of the RNG is by construction paired with reduction of the size of the confidence interval based on 

the estimation error. Thus, if insurance companies wish to measure acceptance/rejection thresholds based on 

estimation error, using such an approach will impose more adverse thresholds, although the Monte Carlo 

estimators are more accurate. For this reason, in the context of a model validation, the use of the model-based 

confidence interval, built from the classical variance estimator, appears appropriate. 

Indeed, as illustrated in Figure 17, using estimation error-based thresholds could lead to invalidating a martingale test 

while the relative deviation from the theoretical value is small compared to the ordinary Monte Carlo relative deviation. 

FIGURE 17: ILLUSTRATION OF VALIDATION REGARDING MARTINGALE TESTS 

  

In Figure 17, three simplified martingale tests are represented where the blue line corresponds to the relative 

deviation at several time steps, the blue cone represents the associated estimation error and the dashed line 

corresponds to the target value. In the left graph, the martingale test passes with large relative deviations 

because the blue line remains in the limits of the confidence interval. In the central graph, the martingale test 

would not pass when the interval measuring estimation error is too narrow, while the relative deviations are much 

smaller than on the left graph. Hence any rejection of the scenarios set for the middle graph could be 

questionable, as absolute differences between the martingale outcome and the lower bound of the interval is 

small. In the right graph, the martingale test passes with small relative deviations, within the model-based 

confidence interval.  

As a consequence, from the validation perspective, a key advantage of using the confidence interval from the 

original model is to be able to compare outcomes (e.g., from ESG martingale tests) within a universal framework. 

As such, it is possible to interpret validation thresholds in terms of absolute value from an original confidence 

interval, which has a similar meaning for all applications, therefore allowing for comparability over different use 

cases and companies. Also, this introduces no specific disincentive to consider a hybrid RNG with high 

convergence accuracy, as again the martingale thresholds are defined a priori, possibly in the light of their own 

impacts on the liabilities, instead of varying by type of RNG. 

That being said, it appears that deriving an estimation error threshold, which could be of interest to set a priori 

expectations on deviations, is far from easy to implement for hybrid RNGs. Measuring accurate estimation errors for 

hybrid RNGs has for a long time been an intractable problem and it is only recently that some attempts were 

provided to measure estimation error from hybrid RNGs. As such, some studies13 showed that even the Gaussian 

assumption for asymptotic deviation of the randomised quasi-RNG is not valid, advocating for adding an additional 

margin to the estimation error measurement. This shows the complexity in deriving such uncertainty estimates. It is 

expected that this will continue to be a core area of research in computational mathematics in the coming years, 

from which the insurance space could take advantage to further understand and stabilise valuation metrics. 

 

 

 

 

 
13 Tuffin, Bruno (9 May 2008). Randomization of Quasi-Monte Carlo Methods for Error Estimation: Survey and Normal Approximation. Monte Carlo 

Methods and Applications vol. 10, no. 3-4, 2004, pp. 617-628. Retrieved 2 December 2022 from https://doi.org/10.1515/mcma.2004.10.3-4.617. 

https://doi.org/10.1515/mcma.2004.10.3-4.617
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